Sample Application for Small Business Funding

Through the Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs, NIA aims to help small businesses develop effective treatments and interventions for healthy aging. NIH small business funding is competitive, and resubmissions are a common and important part of the award process.

Copyright Notice: The awardee allows you to use the material (e.g. data, writing, graphics) in their application only for nonprofit educational purposes, provided the material remains unchanged and the principal investigator, awardee organization, and NIH NIA are credited.

Find more NIA sample applications and information about SBIR/STTR funding:
https://www.nia.nih.gov/research/sbir/nia-small-business-sample-applications
SUMMARY STATEMENT

PROGRAM CONTACT:
BRADLEY WISE

(Privileged Communication)

Release Date: 11/23/2018

Revised Date:

Application Number: 1 R42 AG062026-01A1

Principal Investigators (Listed Alphabetically):

FISCHL, BRUCE
WIGHTON, PAUL (Contact)

Applicant Organization: CORTICOMETRICS, LLC

Review Group: ZRG1 SBIB-T (10)
Center for Scientific Review Special Emphasis Panel
Small Business: Medical Imaging

Meeting Date: 11/15/2018
Council: JAN 2019
Requested Start: 05/01/2019

RFA/PA: PAS18-188
PCC: 3BFBRBW

Project Title: Unbiased longitudinal neuromorphometry for clinical decision support

SRG Action: Impact Score:20

Next Steps: Visit https://grants.nih.gov/grants/next_steps.htm

Human Subjects: 10-No human subjects involved
Animal Subjects: 10-No live vertebrate animals involved for competing appl.

<table>
<thead>
<tr>
<th>Project Year</th>
<th>Direct Costs Requested</th>
<th>Estimated Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ADMINISTRATIVE BUDGET NOTE: The budget shown is the requested budget and has not been adjusted to reflect any recommendations made by reviewers. If an award is planned, the costs will be calculated by Institute grants management staff based on the recommendations outlined below in the COMMITTEE BUDGET RECOMMENDATIONS section.
RESUME AND SUMMARY OF DISCUSSION: In this very strong Fast Track STTR proposal, investigators seek to advance and commercialize a longitudinal, neuro-morphometric image processing pipeline for radiology, neurology and related clinical fields using MRI data and modern software practices such as docker and common workflow language (CWL). The study section lauded the sound scientific premise and significance of the proposal due to its potential in helping clinicians quantitatively assess and interpret changes in brain MRI data and identifying effective treatment early in the stages of Alzheimer's disease. Previous reviewer's comments were addressed effectively by adding functionalities for segmentation of hippocampal subfields and amygdalar nuclei and for longitudinal prediction of the onset of Alzheimer's disease. Other clear advantages of this focused proposal include a well-thought out innovative approach with solid preliminary data, rigorous assessment criteria and technical foundation by an excellent team of investigators and collaborators. Overall, the study section enthusiastically agreed that this technology could potentially advance a clinically useful neuro-morphometric longitudinal analysis stream with more statistical power than is currently available commercially.

DESCRIPTION (provided by applicant): Normal human neuroanatomy is incredibly variable, and increases with age. This impedes the ability of neuroimaging to detect effects in neurological conditions such as Alzheimer's disease (AD), Huntington's disease (HD), multiple sclerosis (MS) and schizophrenia. Most of the recently available state-of-the-art quantitative imaging tools still use cross-sectional methods to analyze repeated scans. These tools lack the sensitivity to monitor subtle progressive changes because such approaches do not account for the large intrinsic variability of normal neuroanatomy. The goal of this project is to commercialize a longitudinal, neuro-morphometric image processing pipeline for use in radiology, neurology and related clinical fields. The successful completion of this project will result in a clinically useful neuro-morphometric longitudinal analysis stream with more statistical power than is currently available commercially. This increase in power will directly translate into an enhanced ability to detect and assess progression at both the individual and group levels. It will also alleviate a major pain point in current longitudinal neuroradiology reading workflows, reducing radiology report turnaround times (RTAT).

PUBLIC HEALTH RELEVANCE: The proposed project will develop software to help clinicians quantitatively assess and interpret changes in brain MRI data in a way that integrates seamlessly into an existing clinical workflow. It will help radiologists detect changes to brain structures earlier and more accurately, in neurological conditions such as Alzheimer's disease (AD), Huntington's disease (HD), multiple sclerosis (MS) and schizophrenia. The resulting efforts will translate into an enhanced ability to detect and assess disease progression, and reduce radiology report turnaround time.

CRITIQUE 1

Significance: 2
Investigator(s): 1
Innovation: 3
Approach: 2
Environment: 1

Overall Impact: This is a resubmission of a Fast-Track STTR application, the investigators seek to optimize Freesurfer for longitudinal analysis. The software will be hardened with modern software practices such as docker and common workflow language (CWL). The software will allow radiologists to more conveniently leverage the benefits of longitudinal imaging. Scientific premise is solid, building upon the team's extensive experience and expertise in this area. The project is scientifically rigorous with carefully worked out details on how the aims are going to be achieved. The team is very competent
to carry out the research. Previous concerns on innovation are addressed by adding functionalities for segmentation of hippocampal subfields and amygdalar nuclei and for longitudinal prediction of the onset of Alzheimer’s disease.

1. Significance:

Strengths

- Most quantitative imaging tools are still cross-sectional not longitudinal.
- Cross-sectional studies confounded by large inter-subject variability in neuroanatomy.
- Technology will increase sensitivity in detecting subtle disease progression.
- Technology will increase report turnaround times (RTAT).
- Help radiologists avoid having to find comparable slices for longitudinal follow-up scans.

Weaknesses

- Nothing major.

2. Investigator(s):

Strengths

- The investigators are very strong and have the relevant expertise and experience to carry out the proposed research.

Weaknesses

- Nothing major.

3. Innovation:

Strengths

- Longitudinal analysis pipeline.
- Modern software deployment using docker.
- Integration with AutoRegister.
- Midspace registration.

Weaknesses

- Some of these techniques were developed quite some time ago, but additional functionalities are now added in response to previous comments, including new tools for segmentation of hippocampal subfields and amygdalar nuclei and for longitudinal prediction of the onset of Alzheimer’s disease.

4. Approach:

Strengths

- The research plan is scientifically rigorous with carefully worked out experimental plans.
- Use of state-of-the-art software deployment techniques (docker, CWL, etc.).
- Solid software development practices.
- Speed optimization for clinical use, aiming 15 minutes total execution time.
Integration of the longitudinal pipeline with slice-prescriptioning using the AutoRegister tool, which is developed by the same company (CortioMetrics).

Weaknesses
- Nothing major.

5. Environment:

Strengths
- Excellent.

Weaknesses
- Nothing major.

Phase II (Type 2 R42 and Type 2 R44 applications):

Direct Phase II (Type 1 R44 applications-See Face Page):

Fast Track (Type 1 R42 and Type 1 R44 applications):

Protections for Human Subjects
Not Applicable (No Human Subjects)

Inclusion of Women, Minorities and Children:
- Sex/Gender:
- Race/Ethnicity:
- For NIH-Defined Phase III trials, Plans for valid design and analysis:
- Inclusion/Exclusion of Children under 18:

Vertebrate Animals:
Not Applicable (No Vertebrate Animals)

Biohazards:
Not Applicable (No Biohazards)

Resource Sharing Plans:
Acceptable

Budget and Period of Support:
Recommend as Requested
CRITIQUE 2

Significance: 1
Investigator(s): 1
Innovation: 2
Approach: 2
Environment: 1

Overall Impact: This Fast Track application will develop further and commercialize a software environment and pipeline that describes longitudinal changes in brain structures as seen in MRI. Those image-based biomarkers may be helpful in identifying effective treatment early in the stages of Alzheimer's disease, and thus could have a powerful influence on the field. The overall project is rigorous (though details of the validation process are minimal) and the investigators are experienced and expert. They will seek FDA approval and have had preliminary discussions there; this work will focus on validation in accord with those discussions. The commercialization plan makes no estimate of the potential market nor of the additional funds required to bring the product to market.

1. Significance:
 Strengths
 • Longitudinal analysis of brain structures, especially including subregions of the hippocampus and the amygdala, will help to identify and track early signs of Alzheimer's disease. This could yield a four-fold improvement in discrimination compared to cross-sectional methods.
 • This biomarker may be helpful in identifying effective treatments.
 Weaknesses
 • None noted

 Addition to the review criteria: “Is there a strong scientific premise?” Yes
 • Specifically, has the applicant:
 ◦ Provided sufficient justification for the proposed work? Yes
 ◦ Cited appropriate work and/or preliminary data? Yes
 ◦ Appropriately identified strengths and weaknesses in prior work in the field? Yes
 ◦ Proposed to fill a significant gap in the field? Yes

2. Investigator(s):
 Strengths
 • Excellent team: Wighton for software and Fischl for algorithms and analysis
 Weaknesses
 • None noted

3. Innovation:
 Strengths
 • The use of FreeSurfer and attention to "inverse consistency" in time-series image data will reduce bias
• Their approach to registration is robust and has demonstrated value

Weaknesses
• None noted

4. Approach:
Strengths
• Construction of an integrated software environment and pipeline for the analysis, using docker and CWL.

Weaknesses
• The work will explore methods “to predict a subject’s neuromorphometrics at an arbitrary time in the future from as little as a single timepoint.” No definition of, or approach to, the methods is given, nor is any theoretical basis identified. (The discussion in Phase 2, Subaim 1.3 does not provide that information.)

Rigor -- Addition to review criteria: Are there “strategies to ensure a robust and unbiased approach, as appropriate for the work proposed?” Likely

Possible considerations, if appropriate for the scientific field and research question, include plans for:

- determining group sizes There is no mention of group sizes
- analyzing anticipated results A reference to earlier work is given; but no details are included here
- reducing bias Unknown
- ensuring independent and blinded measurements Yes
- improving precision and reducing variability Unknown
- including or excluding research subjects Unknown
- managing missing data N/A

5. Environment:
Strengths
• Excellent

Weaknesses
• None noted

Fast Track (Type 1 R42 and Type 1 R44 applications):
Acceptable
• Suitable for Fast Track: reasonable goals identified for Phases I and II

Protections for Human Subjects
Acceptable Risks and Adequate Protections
• Deidentified retrospective data are being used.
Inclusion of Women, Minorities and Children:
- Sex/Gender:
- Race/Ethnicity:
- For NIH-Defined Phase III trials, Plans for valid design and analysis:
- Inclusion/Exclusion of Children under 18:

Vertebrate Animals:
Not Applicable (No Vertebrate Animals)

Biohazards:
Not Applicable (No Biohazards)

Budget and Period of Support:
Recommend as Requested

CRITIQUE 3

Significance: 3
Investigator(s): 1
Innovation: 2
Approach: 3
Environment: 1

Overall Impact: This is a very strong application from a very experienced and well-known group of applicants to commercialize aspects of their FreeSurfer pipeline to improve serial studies in neuroradiology with applications to neurodegenerative diseases such as Alzheimer's disease. This application will expand on current neuromorphometric tools in FreeSurfer for the purpose of detecting volumetric change in serial images of patients. The underlying scientific premise is that a joint analysis of longitudinal data will improve the sensitivity of detecting significant changes compared to standard cross-sectional analyses. Overall, the Phase I component of this application is very well designed with appropriate milestones. By the end of Phase I we will have a reimplemented and documented software package together with a quantitative assessment of its performance to milestones that have already been arrived at following initial consultations with the FDA. In some respects, the main issue with Phase I is that it feels overly ambitious, but that is a risk the investigators can take. Phase II is a little less well designed and it is unclear how much of this work will contribute to the overall product – in some respects Phase I is the whole project here. The response to the reviews from the previous submission was adequate, though there remain questions as to whether structural changes have the sensitivity to significantly help with disease detection. Some of the methods are also somewhat old (though would be ground breaking considering the state of what is available clinically) and may be some of the computational optimization could make use of some of the emerging deep learning techniques that are becoming available. One can imagine training a neural network with the output of FreeSurfer to replace the whole process, or at least to significantly speed it up. Deep learning is no panacea and may have other issues.
Phase II (Type 2 R42 and Type 2 R44 applications):

Direct Phase II (Type 1 R44 applications—See Face Page):

Fast Track (Type 1 R42 and Type 1 R44 applications):

Protections for Human Subjects

Inclusion of Women, Minorities and Children:

• Sex/Gender:
• Race/Ethnicity:
• For NIH-Defined Phase III trials, Plans for valid design and analysis:
• Inclusion/Exclusion of Children under 18:

Vertebrate Animals:

Budget and Period of Support:
Recommended budget modifications or possible overlap identified:

THE FOLLOWING SECTIONS WERE PREPARED BY THE SCIENTIFIC REVIEW OFFICER TO
SUMMARIZE THE OUTCOME OF DISCUSSIONS OF THE REVIEW COMMITTEE, OR REVIEWERS’
WRITTEN CRITIQUES, ON THE FOLLOWING ISSUES:

COMMITTEE BUDGET RECOMMENDATIONS: The budget was recommended as requested.

Footnotes for 1 R42 AG062026-01A1; PI Name: Wighton, Paul

NIH has modified its policy regarding the receipt of resubmissions (amended applications).
OD-14-074.html. The impact/priority score is calculated after discussion of an application by
averaging the overall scores (1-9) given by all voting reviewers on the committee and
multiplying by 10. The criterion scores are submitted prior to the meeting by the individual
reviewers assigned to an application, and are not discussed specifically at the review meeting
or calculated into the overall impact score. Some applications also receive a percentile
ranking. For details on the review process, see
http://grants.nih.gov/grants/peer_review_process.htm#scoring.
Notice of NIH Policy to All Applicants: Meeting rosters are provided for information purposes only. Applicant investigators and institutional officials must not communicate directly with study section members about an application before or after the review. Failure to observe this policy will create a serious breach of integrity in the peer review process, and may lead to actions outlined in NOT-OD-14-073 at https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-073.html and NOT-OD-15-106 at https://grants.nih.gov/grants/guide/notice-files/NOT-OD-15-106.html, including removal of the application from immediate review.

CHAIRPERSON(S)
CHENG, ZHEN, PHD
ASSOCIATE PROFESSOR OF RADIOLOGY
MOLECULAR IMAGING PROGRAM
BIO-X PROGRAM
STANFORD UNIVERSITY

MEMBERS
BABA, JUSTIN S, PHD
ASSOCIATE PROFESSOR
BIOMEDICAL ENGINEER
DEPARTMENT OF RADIOLOGY
OAK RIDGE NATIONAL LABORATORY
VANDERBILT UNIVERSITY MEDICAL CENTER

BOLAN, PATRICK J, PHD
CONSULTANT, BREAST-MED, INC.
ASSOCIATE PROFESSOR
DEPARTMENT OF RADIOLOGY
CENTER FOR MAGNETIC RESONANCE RESEARCH
UNIVERSITY OF MINNESOTA

BROZIK, JAMES A, PHD
CHIEF EXECUTIVE OFFICER
PHOTON BIOSCIENCES, LLC

CANAVESI, CRISTINA, PHD
PRESIDENT
LIGHTOPTECH CORPORATION

CHAMBERLAIN, RYAN M, PHD
DIRECTOR OF RESEARCH AND DEVELOPMENT
IMBIO, LLC

CHAUDHARI, ABHIJIT J, PHD
ASSOCIATE PROFESSOR OF RADIOLOGY
DIRECTOR, CENTER FOR MOLECULAR AND GENOMIC IMAGING
UNIVERSITY OF CALIFORNIA, DAVIS

GOLESTANI RAD, LALEH, PHD
ASSISTANT PROFESSOR
DEPARTMENT OF BIOMEDICAL ENGINEERING AND RADIOLOGY
MCCORMICK SCHOOL OF ENGINEERING
NORTHEASTERN UNIVERSITY

GOULD, ROBERT, SCD
ASSOCIATE PROFESSOR
DEPARTMENTS OF RADIOLOGY AND BIOMEDICAL IMAGING
UNIVERSITY OF CALIFORNIA

HATT, CHARLES R, PHD
ADJUNCT RESEARCH PROFESSOR
DEPARTMENT OF RADIOLOGY
UNIVERSITY OF MICHIGAN
HINKLE, GEORGE H, MS
ASSOCIATE PROFESSOR
DIVISION OF PHARMACY PRACTICE
COLLEGE OF PHARMACY
OHIO STATE UNIVERSITY

HOMAN, KIMBERLY, PHD
CHIEF TECHNOLOGY OFFICER
NANOHYBRIDS, LLC

HU, XIN H, PHD
PROFESSOR
DEPARTMENT OF PHYSICS
EAST CAROLINA UNIVERSITY

JELICKS, LINDA A, PHD
ASSOCIATE PROFESSOR
DEPARTMENT OF PHYSIOLOGY AND BIOPHYSICS
ALBERT EINSTEIN COLLEGE OF MEDICINE

KRAITCHMAN, DARA L, PHD, VMD
PROFESSOR
DIVISION OF MR RESEARCH
DEPARTMENT OF RADIOLOGY
JOHNS HOPKINS UNIVERSITY

KUNDRA, VIKAS, MD, PHD
PROFESSOR AND DIRECTOR OF MOLECULAR IMAGING
DEPARTMENT OF RADIOLOGY
M.D. ANDERSON CANCER CENTER
UNIVERSITY OF TEXAS

LOEW, MURRAY H, PHD
PROFESSOR
DEPARTMENT OF BIOMEDICAL ENGINEERING
GEORGE WASHINGTON UNIVERSITY

LU, ZHENG F, PHD
PROFESSOR
DEPARTMENT OF RADIOLOGY
UNIVERSITY OF CHICAGO MEDICAL CENTER

MIDDLETON, MICHAEL S, MD, PHD
DIRECTOR OF CLINICAL TRIALS
DEPARTMENT OF RADIOLOGY
UNIVERSITY OF CALIFORNIA AT SAN DIEGO

MOURAD, PIERRE D, PHD
PROFESSOR
DEPARTMENTS OF NEUROLOGICAL SURGERY, ENGINEERING AND MATHEMATICS
UNIVERSITY OF WASHINGTON

ORALKAN, OMER, PHD
PROFESSOR
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING
NORTH CAROLINA STATE UNIVERSITY

PAPADEMETRIS, XENOPHON, PHD
PROFESSOR
DEPARTMENTS OF RADIOLOGY, BIOMEDICAL IMAGING AND BIOMEDICAL ENGINEERING, YALE UNIVERSITY
CONSULTANT, BRAIN ELECTROPHYSIOLOGY LABORATORY COMPANY

PAUTLER, ROBIA G, PHD
ASSOCIATE PROFESSOR
DEPARTMENTS OF MOLECULAR PHYSIOLOGY AND BIOPHYSICS, NEUROSCIENCE AND RADIOLOGY
BAYLOR COLLEGE OF MEDICINE

SAMSONOV, ALEXEY, PHD
SENIOR SCIENTIST
DEPARTMENT OF RADIOLOGY
WISCONSIN INSTITUTES FOR MEDICAL RESEARCH
UNIVERSITY OF WISCONSIN-MADISON

SIEREN, JESSICA C, PHD
ASSISTANT PROFESSOR
DEPARTMENTS OF RADIOLOGY AND BIOMEDICAL ENGINEERING
UNIVERSITY OF IOWA

SNOOK, KEVIN A, PHD
SENIOR ENGINEER
ACTUATED MEDICAL, INC.

TANG, XIANGYANG, PHD
ASSOCIATE PROFESSOR
DEPARTMENT OF RADIOLOGY AND IMAGING SCIENCES
EMORY-GATECH DEPARTMENT OF BIOMEDICAL ENGINEERING
EMORY UNIVERSITY SCHOOL OF MEDICINE

TOPSAKAL, ERDEM, PHD
DEPARTMENT CHAIR AND PROFESSOR
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING
VIRGINIA COMMONWEALTH UNIVERSITY

TRIDANDAPANI, SRINI, MD, PHD
VICE CHAIR FOR IMAGING INFORMATICS AND PROFESSOR
DEPARTMENT OF RADIOLOGY
UNIVERSITY OF ALABAMA AT BIRMINGHAM

VAIDYANATHAN, GANESAN, PHD
PROFESSOR
DEPARTMENT OF RADIOLOGY
DUKE UNIVERSITY MEDICAL CENTER
Consultants are required to absent themselves from the room during the review of any application if their presence would constitute or appear to constitute a conflict of interest.